|
内容介绍:
1.深度学习框架介绍 [48.7M]
1.lesson1-PyTorch介绍.mp4 [48.7M]
2.开发环境准备 [54.5M]
2.lesson2-开发环境准备.mp4 [54.5M]
3.初见深度学习 [208.6M]
3.lesson3-初探Linear Regression案例-1.mp4 [71.9M]
4.lesson3-初探Linear Regression案例-2.mp4 [43.1M]
5.lesson4-PyTorch求解Linear Regression案例.mp4 [35.7M]
6.lesson5 -手写数字问题引入1.mp4 [36.7M]
7.lesson5 -手写数字问题引入2.mp4 [21M]
4.Pytorch张量操作 [426.4M]
8.lesson6 基本数据类型1.mp4 [54.4M]
9.lesson6 基本数据类型2.mp4 [28.2M]
10.lesson7 创建Tensor 1.mp4 [51.6M]
11.lesson7 创建Tensor 2.mp4 [44.3M]
12.lesson8 索引与切片1.mp4 [47.2M]
13.lesson8 索引与切片2.mp4 [45.4M]
14.lesson9 维度变换1.mp4 [33.1M]
15.lesson9 维度变换2.mp4 [40.7M]
16.lesson9 维度变换3.mp4 [40.8M]
17.lesson9 维度变换4.mp4 [40.8M]
5.张量高阶操作 [405.3M]
18.lesson10 Broatcasting 1.mp4 [57.9M]
19.lesson10 Broatcasting 2.mp4 [46.2M]
20.lesson11 合并与切割1.mp4 [46.8M]
21.lesson11 合并与切割2.mp4 [30.8M]
22.lesson12 基本运算.mp4 [67.1M]
23.lesson13 数据统计1.mp4 [39.9M]
24.lesson13 数据统计2.mp4 [54.7M]
25.lesson14 高阶OP.mp4 [61.9M]
6.随机梯度下降 [286.1M]
26.lesson16 什么是梯度1.mp4 [69.2M]
27.lesson16 什么是梯度2.mp4 [43.3M]
28.lesson17 常见梯度.mp4 [18.4M]
29.lesson18 激活函数及其梯度1.mp4 [45.5M]
30.lesson18 激活函数及其梯度2.mp4 [44.4M]
31.lesson18 激活函数及其梯度3.mp4 [65.3M]
7.感知机梯度传播推导 [258.3M]
32.lesson19 单一输出感知机1.mp4 [47.4M]
33.lesson19 多输出Loss层2.mp4 [49.7M]
34.lesson20 链式法则.mp4 [39.9M]
35.lesson21 反向传播.mp4 [82M]
36.lesson22 优化小实例.mp4 [39.2M]
8.多层感知机与分类器 [353.9M]
37.lesson24 Logistic Regression.mp4 [47.8M]
38.lesson25 交叉熵.mp4 [72.8M]
39.lesson26 多分类实战.mp4 [35M]
40.lesson27 全连接层.mp4 [52.1M]
41.lesson28 激活函数与GPU加速.mp4 [39.6M]
42.lesson29 测试.mp4 [53.8M]
43.lesson30-Visdom可视化.mp4 [52.8M]
9.过拟合 [262.5M]
44.lesson31-过拟合与欠拟合.mp4 [42.5M]
45.lesson32-Train-Val-Test-交叉验证-1.mp4 [45.9M]
46.lesson32-Train-Val-Test-交叉验证-2.mp4 [32.3M]
47.lesson33-regularization.mp4 [39M]
48.lesson34-动量与lr衰减.mp4 [51.5M]
49.lesson35-early stopping, dropout, sgd.mp4 [51.2M]
10.卷积神经网络CNN [678.5M]
50.lesson37-什么是卷积-1.mp4 [62.8M]
51.lesson37-什么是卷积-2.mp4 [39.6M]
52.lesson38-卷积神经网络-1.mp4 [41.4M]
53.lesson38-卷积神经网络-2.mp4 [62.9M]
54.lesson38-卷积神经网络-3.mp4 [35.5M]
55.lesson39-Pooling&upsample.mp4 [34.1M]
56.lesson40-BatchNorm-1.mp4 [41.4M]
57.lesson40-BatchNorm-2.mp4 [51.3M]
58.lesson41-LeNet5,AlexNet, VGG, GoogleN.mp4 [49.3M]
59.lesson41-LeNet5,AlexNet, VGG, GoogLeN.mp4 [40.4M]
60.lesson42-ResNet,DenseNet-1.mp4 [53.2M]
61.lesson42-ResNet, DenseNet-2.mp4 [43.6M]
62.lesson43-nn.Module-1.mp4 [45M]
63.lesson43-nn.Module-2.mp4 [31.4M]
64.lesson44-数据增强Data Argumentation.mp4 [46.8M]
11.循环神经网络RNN&LSTM [465M]
65.lesson46-时间序列表示.mp4 [53.5M]
66.lesson47-RNN原理-1.mp4 [28.4M]
67.lesson47-RNN原理-2.mp4 [34.9M]
68.lesson48-RNN Layer使用-1.mp4 [34.2M]
69.lesson48-RNN Layer使用-2.mp4 [29.9M]
70.lesson49-时间序列预测.mp4 [53.3M]
71.lesson50-RNN训练难题.mp4 [55M]
72.lesson51-LSTM原理-1.mp4 [33M]
73.lesson51-LSTM原理-2.mp4 [45.7M]
74.lesson52-LSTM Layer使用.mp4 [28.4M]
75.lesson53-情感分类实战.mp4 [68.6M]
12.对抗生成网络GAN [316.2M]
76.lesson54-数据分布.mp4 [17.4M]
77.lesson55-画家的成长历程.mp4 [28.9M]
78.lesson56-GAN发展.mp4 [23M]
79.lesson57-纳什均衡-D.mp4 [20.4M]
80.lesson58-纳什均衡-G.mp4 [36.6M]
81.lesson59-JS散度的弊端.mp4 [36.8M]
82.lesson60-EM距离.mp4 [17.2M]
83.lesson61-WGAN与WGAN-GP.mp4 [28.8M]
84.lesson62-G和D实现.mp4 [17.3M]
85.lesson63-GAN实战.mp4 [33.3M]
86.lesson64-GAN训练不稳定.mp4 [20.2M]
87.lesson65-WGAN-GP实战.mp4 [36.3M]
百度网盘下载地址:
|
|